\(\int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx\) [547]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 296 \[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (23 a^2+9 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 (a-b) \sqrt {a+b} \left (15 a^2-8 a b+9 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {16 a b \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \]

[Out]

-2/15*(a-b)*(23*a^2+9*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^
(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2/15*(a-b)*(15*a^2-8*a*b+9*b^2)*cot(d
*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(
1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2/5*b*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/d+16/15*a*b*(a+b*sec(d*x+c))^
(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3915, 4087, 4090, 3917, 4089} \[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (15 a^2-8 a b+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 b d}-\frac {2 (a-b) \sqrt {a+b} \left (23 a^2+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b d}+\frac {2 b \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 d}+\frac {16 a b \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d} \]

[In]

Int[Sec[c + d*x]*(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(23*a^2 + 9*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]],
(a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b*d) + (2*(
a - b)*Sqrt[a + b]*(15*a^2 - 8*a*b + 9*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]
], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b*d) + (
16*a*b*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*d) + (2*b*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d)

Rule 3915

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*Cot[e + f*x]*(
(a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Dist[1/m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(b^2*(m - 1)
 + a^2*m + a*b*(2*m - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] &&
IntegerQ[2*m]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4087

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {2}{5} \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (\frac {5 a^2}{2}+\frac {3 b^2}{2}+4 a b \sec (c+d x)\right ) \, dx \\ & = \frac {16 a b \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\sec (c+d x) \left (\frac {1}{4} a \left (15 a^2+17 b^2\right )+\frac {1}{4} b \left (23 a^2+9 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {16 a b \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {1}{15} \left (b \left (23 a^2+9 b^2\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{15} \left ((a-b) \left (15 a^2-8 a b+9 b^2\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (23 a^2+9 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 (a-b) \sqrt {a+b} \left (15 a^2-8 a b+9 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {16 a b \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 b (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 13.45 (sec) , antiderivative size = 440, normalized size of antiderivative = 1.49 \[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=-\frac {2 (a+b \sec (c+d x))^{5/2} \left (-2 \left (23 a^3+23 a^2 b+9 a b^2+9 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 \left (15 a^3+23 a^2 b+17 a b^2+9 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )-\left (23 a^2+9 b^2\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 d (b+a \cos (c+d x))^3 \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sec ^{\frac {5}{2}}(c+d x) \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )}+\frac {\cos ^2(c+d x) (a+b \sec (c+d x))^{5/2} \left (\frac {2}{15} \left (23 a^2+9 b^2\right ) \sin (c+d x)+\frac {22}{15} a b \tan (c+d x)+\frac {2}{5} b^2 \sec (c+d x) \tan (c+d x)\right )}{d (b+a \cos (c+d x))^2} \]

[In]

Integrate[Sec[c + d*x]*(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*(a + b*Sec[c + d*x])^(5/2)*(-2*(23*a^3 + 23*a^2*b + 9*a*b^2 + 9*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]
*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]
+ 2*(15*a^3 + 23*a^2*b + 17*a*b^2 + 9*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a
 + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (23*a^2 + 9*b^2)*Cos[c + d*x
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*d*(b + a*Cos[c + d*x])^3*Sqrt[Sec[(c + d*x)/2
]^2]*Sec[c + d*x]^(5/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-1 + Tan[(c + d*x)/2]^2)) + (Cos[c + d*x]^2*(a
+ b*Sec[c + d*x])^(5/2)*((2*(23*a^2 + 9*b^2)*Sin[c + d*x])/15 + (22*a*b*Tan[c + d*x])/15 + (2*b^2*Sec[c + d*x]
*Tan[c + d*x])/5))/(d*(b + a*Cos[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2236\) vs. \(2(266)=532\).

Time = 14.61 (sec) , antiderivative size = 2237, normalized size of antiderivative = 7.56

method result size
default \(\text {Expression too large to display}\) \(2237\)

[In]

int(sec(d*x+c)*(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(14*a*b^2*sin(d*x+c)+34*a^2*b*sin(d*x+c)-15*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),
((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+23*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+9*EllipticE(cot(d*x+c)-csc(d*x+c),((a-
b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2+23*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2-23*EllipticF(cot(d*x+c)-cs
c(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*a^2*b-17*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2-18*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+46*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*a^3*cos(d*x+c)-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+18*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)+9*b^3
*sin(d*x+c)+3*tan(d*x+c)*b^3+3*b^3*tan(d*x+c)*sec(d*x+c)+14*a*b^2*tan(d*x+c)+23*a^3*cos(d*x+c)*sin(d*x+c)-46*E
llipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-34*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-23*EllipticF(cot(d*x+c)-
csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*a^2*b*cos(d*x+c)^2-17*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+23*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*
x+c)^2+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c
)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2+46*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)+18*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b
)/(a+b))^(1/2))*a*b^2*cos(d*x+c)-30*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)-15*EllipticF(cot(d*x+c)-csc(d*x+c)
,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3-9*
EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*b^3+9*a*b^2*cos(d*x+c)*sin(d*x+c)+23*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3+9*EllipticE(cot(d*x
+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*b^3+11*a^2*b*cos(d*x+c)*sin(d*x+c))

Fricas [F]

\[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^3 + 2*a*b*sec(d*x + c)^2 + a^2*sec(d*x + c))*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}} \sec {\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral((a + b*sec(c + d*x))**(5/2)*sec(c + d*x), x)

Maxima [F]

\[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)*sec(d*x + c), x)

Giac [F]

\[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)*sec(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \sec (c+d x) (a+b \sec (c+d x))^{5/2} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\cos \left (c+d\,x\right )} \,d x \]

[In]

int((a + b/cos(c + d*x))^(5/2)/cos(c + d*x),x)

[Out]

int((a + b/cos(c + d*x))^(5/2)/cos(c + d*x), x)